Generalized sampling and the stable and accurate reconstruction of piecewise analytic functions from their Fourier coefficients

نویسندگان

  • Ben Adcock
  • Anders C. Hansen
چکیده

Suppose that the first m Fourier coefficients of a piecewise analytic function are given. Direct expansion in a Fourier series suffers from the Gibbs phenomenon and lacks uniform convergence. Nonetheless, in this paper we show that, under very broad conditions, it is always possible to recover an n-term expansion in a different system of functions using only these coefficients. Such an expansion can be made arbitrarily close to the best possible n-term expansion in the given system. Thus, if a piecewise polynomial basis is employed, for example, exponential convergence can be restored. The resulting method is linear, numerically stable and can be implemented efficiently in only O (nm) operations. A key issue is how the parameter m must scale in comparison to n to ensure such recovery. We derive analytical estimates for this scaling for large classes of polynomial and piecewise polynomial bases. In particular, we show that in many important cases, including the case of piecewise Chebyshev polynomials, this scaling is quadratic: m = O ( n ) . Therefore, with a system of polynomials that the user is essentially free to choose, one can restore exponential accuracy in n and root-exponential accuracy in m. This generalizes a result proved recently for piecewise Legendre polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal wavelet reconstructions from Fourier samples via generalized sampling

We consider the problem of computing wavelet coefficients of compactly supported functions from their Fourier samples. For this, we use the recently introduced framework of generalized sampling in the context of compactly supported orthonormal wavelet bases. Our first result demonstrates that using generalized sampling one obtains a stable and accurate reconstruction, provided the number of Fou...

متن کامل

Recovering piecewise smooth functions from nonuniform Fourier measurements

In this paper, we consider the problem of reconstructing piecewise smooth functions to high accuracy from nonuniform samples of their Fourier transform. We use the framework of nonuniform generalized sampling (NUGS) to do this, and to ensure high accuracy we employ reconstruction spaces consisting of splines or (piecewise) polynomials. We analyze the relation between the dimension of the recons...

متن کامل

Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon

We introduce a simple and efficient method to reconstruct an element of a Hilbert space in terms of an arbitrary finite collection of linearly independent reconstruction vectors, given a finite number of its samples with respect to any Riesz basis. As we establish, provided the dimension of the reconstruction space is chosen suitably in relation to the number of samples, this procedure can be i...

متن کامل

Algebraic signal sampling, Gibbs phenomenon and Prony-type systems

Systems of Prony type appear in various signal reconstruction problems such as finite rate of innovation, superresolution and Fourier inversion of piecewise smooth functions. We propose a novel approach for solving Prony-type systems, which requires sampling the signal at arithmetic progressions. By keeping the number of equations small and fixed, we demonstrate that such “decimation” can lead ...

متن کامل

On optimal wavelet reconstructions from Fourier samples: linearity and universality of the stable sampling rate

In this paper we study the problem of computing wavelet coe cients of compactly supported functions from their Fourier samples. For this, we use the recently introduced framework of generalized sampling. Our rst result demonstrates that using generalized sampling one obtains a stable and accurate reconstruction, provided the number of Fourier samples grows linearly in the number of wavelet coe ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2015